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evolution of H, leads to rapid, irreversible sequestering of the

ABSTRACT: The catalytic dehydrogenation of ammonia- FLP and prevents turnover.
and amine-boranes by a dimethylxanthene-derived frus- In recent work we have developed single component FLPs
trated Lewis pair is described. Turnover is facilitated on a based on a dimethylxanthene backbone that possess a P--B
thermodynamic basis by the ready release of H, from the separation (4.2—4.5 A) preorganized for the facile uptake of H,.
weakly basic PPh,-containing system. In situ NMR studies Moreover, by varying the cumulative Lewis acid/base strength of
and the isolation Of intermediates from stoichiometric phosphine and borane Components, a system can be designed (1)
reactions support a mechanism initiated by B—H Scheme 1) which cleaves H, to give an equilibrium mixture of free
activation, followed by end-growth BN coupling involving
the terminal NH bond of the bound BN fragment and a Scheme 1. Synthesis and H, Activation by Dimethylxanthene-
BH bond of the incoming borane monomer. Based FLPs 1-3
ehydrocoupling represents a powerful synthetic protocol O O e O O
for the construction of both homo- and heteronuclear E—E o H, o
bonds in molecular. and materials science." Among sth PR, BAr, R2P®\ sBAfz
processes, the formation of B—N bonds, e.g.,, from ammonia- H H
borane (AB, H;B-NHs,) or related amine-boranes (H;B-NH,R), 1:R =Mes; Ar = CeFs 1-(H)z R = Mes; Ar = CeFs
has been the subject of significant research effort, reflecting 2n :i: =Tl 2} R =Ph; Ar=CdFs
potential applications in hydrogen storage technologies and the
synthesis of novel polymeric materials.” While B—N coupling can
be effected thermally in some cases, reflecting the complementary FLP and zwitterionic 1-(H), in solution at room temperature.m
polarities of B—H and N—H bonds,” catalytic approaches have With this reversibility in mind, we hypothesized that 1 and related
also been investigated with a view to enhancing the rate of H, systems might be competent for the catalytic dehydrocoupling of
release and/or controlling the nature of the dehydrocoupled AB and related substrates. As such, a new area of catalytic
product(s).” Metal complexes (from all parts of the Periodic endeavor might be opened up to mediation by a metal-free FLP
Table) feature prominently among the most active catalyst approach.”
systems reported to date, but other approaches, including the use The phosphonium borohydride 1-(H), derived from PMes,/
of ionic liquids and Brensted and Lewis acids/bases, have also B(CgF;), functionalized 1 has been shown to exist in equilibrium
been developed.”™ with the “free” FLP and dihydrogen at 295 K (~20:1 1-(H),:1
Frustrated Lewis pairs (FLPs), although described concep- mixture in bromobenzene; Scheme 1).' Targeting applications
tually as far back as 1942,'% emerged as a new paradigm for small in dehydrogenation chemistry, the related PPh, variants 2 and 3
molecule capture and activation following a landmark report by were targeted, reasoning that the incorporation of weaker Lewis
Stephan et al. in 2006.'"'* The ability of such systems acid/base components should lead to more favorable thermody-
(archetypally based on sterically shrouded tertiary phosphine namics for H, loss."” These systems can be synthesized from 4,5-
and fluoroarylborane units) to activate strong nonpolar bonds, dibromo-9,9-dimethylxanthene using a similar approach to that
such as that in H,, has been exploited in “metal-free” catalysis."® employed for 1," and both 2 and 3 can be shown crystallo-
Prominent among Such Processes is FLP-catalyzed hydro. graphically to constitute a FLP (see SI)AS expected, the uptake Of
genation chemistry,'” which relies on the ability of the H, in each case is less thermodynamically favorable than that by 1:
phosphonium hydroborate derived from heterolytic H, cleavage in the case of 2, only 5% conversion to 2-(H), is observed
to transfer H*/H™ to unsaturated substrates such as imines. By spectroscopically upon exposure to H, at 4 atm pressure at 295 K.
contrast, FLP systems capable of effecting turnover in We were unable to obtain any evidence for the formation of 3-
dehydrogenation chemistry are very rare indeed.”'* In part this (H),, presumably due to the much weaker Lewis acidity of the
is due to the fact that in the absence of a suitable coreagent to act as —BMes, function. For 2, the values of AH® and AS® obtained by
ahydrogen acceptor (or the application of elevated temperature/
vacuum), the spontaneous loss of H, in the reverse sense is often Received: February 1, 2016
thermodynamically unfavorable.">'® As a consequence, the Published: February 26, 2016
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monitoring the response of the equilibrium constant to
temperature (34 k] mol ' and 138 J mol ™' K™") can be compared
to values of 38 kJ mol™" and 102 J mol™" K™' obtained for the
corresponding release of H, by 1-(H),.

Given the relative ease of H, loss from 2-(H),, we set out to
investigate the use of 2 as a catalyst in dehydrogenation chemistry.
Accordingly, 2 is found to catalyze the dehydrocoupling of
methylamine- and ammonia-borane to the corresponding Me- or
H-substituted borazine and of dimethylamine-borane to H,B(u-
NMe,),BH, at 328 K and 1 mol % catalyst loading (Scheme 2).

Scheme 2. Catalytic Dehydrogenation of Amine and
Ammonia-Boranes by 2
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While the turnover frequencies for these catalytic processes (~4
h™! for Hy;B-NHj,) are modest in comparison to the most active
transition metal catalysts, they do, to our knowledge, represent
the first example of methylamine- or ammonia-borane dehydro-
genation catalyzed by a main group FLP.”'*

In order to probe potential dehydrocoupling mechanisms,
attempts were made to monitor reactivity in situ by multinuclear
NMR measurements and to examine the products of the
stoichiometric reactions of 2 with ammonia- and amine-boranes
at 295 K. Revealingly, the 1:1 reactions of 2 with adducts of the
general composition H;B-NMe,H;_, (n = 0—3) all proceed via
B—H activation, generating a boron-bound hydride and a P-
BH,NMe,H,_, unit (Scheme 3). All four structures were

Scheme 3. Stoichiometric Reactions of 2 with H;B‘NMe H;_,
(n = 0—3) Proceeding via B—H Bond Cleavage
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confirmed by X-ray crystallography (Figure 1 and SI), and in
the case of 2-(H)(BH,NHj;), 2-(H)(BH,NH,Me), and 2-
(H)(BH,NHMe,), the existence of short NH---HB contacts
(~1.9 A) involving the hydride of the [ArB(C¢Fs),H] ™ unitand a
proton of the coordinated amine could be inferred from the
difference Fourier maps.'®

Spectroscopically, each of the B—H activation products derived
from 2 is characterized by a *'P resonance in the range 1.7—6.3
ppm and by ''B NMR signals at 55 —9.4 to —20.7 ppm (PBH,N)
and ~ —21.5 ppm (for the borohydride unit). With respect to
chemistry occurring under catalytic conditions, the 'H, ''B, and
3IP resonances for 2-(H) (BH,NH;), 2-(H) (BH,NH,Me), and 2-
(H)(BH,NHMe,) are found to correspond to the major species
present in solution at short reaction times. In addition, isolated
samples of these adducts are competent in the catalytic

¥ A ey
B(2) © N(1) »

Figure 1. Structures of 2-(H)(BH,NH;)-CH,Cl, (left) and 2-(H)-
(BH,NH,Me) (right) as determined by X-ray cry-stallography. Here and
elsewhere: Most H atoms and solvate molecule omitted, and selected aryl
groups shown in wireframe format for clarity; thermal ellipsoids set at the
40% probability level. Key metrical parameters: (for 2-(H)(BH,NH,)-
CH,Cl,) P(1)-B(1) 4.692(5) P(1)-B(2) 1.952(4), N(1)-B(2)
1.578(7) A; (for 2-(H)(BH,NH,Me)) P(1)---B(1) 4.600(3), P(1)—
B(2) 1.958(3), B(2)—N(1) 1.578(4) A.

dehydrogenation of the corresponding ammonia- or amine-
borane, providing comparable performance to 2 itself under
matching conditions. As such, it seems likely that these systems
are viable intermediates in the respective catalytic dehydrocou-
pling processes.

Uhl and Slootweg have previously reported the synthesis of
complexes featuring the H,BNH, and H,BNMe, fragments
trapped by a phosphorus/aluminum FLP,” and in the case of the
dimethylaminoborane adduct showed that such a species is a
potential intermediate in the dehydrocoupling of H;B-NHMe, to
H,B(4-NMe,),BH, in a melt. With this in mind, together with the
close NH--HB contacts measured for 2-(H)(BH,NH,), 2-
(H)(BH,NH,Me), and 2-(H) (BH,NHMe, ) in the solid state, we
hypothesized that the loss of H, from these systems might be
relevant in a catalytic context. To our surprise, however, solutions
of these adducts are inert to thermal loss of H, in the temperature
regime associated with the catalytic processes. Thus, e.g, 2-
(H)(BH,NHj,) remains unchanged in dichloromethane-d, after
24 h at 328 K, as judged by in situ multinuclear NMR
measurements. Dehydrogenation can be effected through the
use of a hydrogen acceptor such as Pr,N=BH, (in a fashion
similar to that demonstrated by Manners et al.),"’ and the
aminoborane product 2-(BH,NH,) characterized both spec-
troscopically and crystallographically (Scheme 4). However, it
appears that this species is not relevant to the productive catalytic
cycle: 2-(BH,NH,) is inert to further reaction with AB under

Scheme 4. Formation of the off-cycle Aminoborane Adduct
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“Inset: structure of 2-(BH,NH,)-CH,Cl, as determined by X-ray
crystallography. Key metrical parameters: P(1)---B(1) 4.268(2), P(1)—
B(2) 1.968(2), B(2)—N(1) 1.612(3), N(1)-B(1) 1.582(3) A.
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conditions identical to those used in catalytic runs, remaining
unchanged over 24 h at 328 K in dichloromethane-d, solution.
The apparent inertness of isolated samples of 2-(H) (BH,NH,)
and 2-(H)(BH,NH,Me) toward thermal loss of H, suggested
that their onward reactivity might be dependent on the presence
of additional ammonia- or amine-borane. In the case of the 2/
H;B-NH,j catalytic runs, this hypothesis is also consistent with the
observation of a second intermediate species, which can be shown
(by comparison of multinuclear NMR data with the independ-
ently synthesized complex) to be the oligomeric borane adduct, 2-
(H)(BH,NH,BH,NH,) (SIand Figure 2, left). Although labile in
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Figure 2. Structures of 2-(H)(BH,NH,BH,NH,) (left) and 2-
(H)(BH,NHMeBH,NH,Me) (right) as determined by X-ray crystallog-
raphy. Key metrical parameters: (for 2-(H)(BH,—NH,BH,NH;))
P(1)-B(1) 4.690(3), P(1)-B(2) 1.964(3), B(2)-N(1) 1.558(3),
N(1)-B(3) 1.575(3), B(3)-N(2) 1.587(3) A; (for 2-(H)-
(BHNHMeBH,NH,Me)) P(1)—B(1) 4.668(4), P(1)—B(2) 1.969(5),
B(2)—N(1) 1.562(S5), N(1)—B(3) 1.567(5), B(3)—N(2) 1.604(S) A.

dichloromethane solution at 295 K, this compound can be
obtained as a compositionally pure material via the alternative
reaction of 2 with H;B-NH,BH,-NH; and crystallized from
CH,Cl,/hexane at 273 K. Structurally, 2-
(H)(BH,NH,BH,NH;) (in common with 2-(H)(BH,NH,))
features an P-bound aminoborane chain which is additionally
“anchored” at the -N position through an NH---HB interaction
with the borohydride group (~1.91 A).

While the lability of 2-(H)(BH,NH,BH,NH,) prevents
meaningful attempts to study its onward reactivity, the
corresponding product derived from H;B-NHMeBH,-NH,Me
by terminal B—H activation is stable in dichloromethane solution
at 295 K over a period of 24 h and can therefore be used to probe
potential mechanistic pathways (Scheme S and Figure 2).
Moreover, while 2-(H)(BH,NHMeBH,NH,Me) is most con-
veniently accessed for synthetic purposes from the preformed
BNBN oligomer, it is also the product of the reaction of 2-
(H)(BH,NH,Me) with a second equivalent of H;B-NHMe,
(50% conversion over a period of 2 h at 328 K in dichloro-
methane), thereby providing evidence for a dehydrogenative
chain-growth process.”’ In addition, the reaction of 2-(H)-
(BH,NHMeBH,NH,Me) itself with a further equivalent of H,B-
NH,Me generates the (known) cyclic trimer (H,BNHMe); as
the major product, along with small amount of trimethylborazine.
This cyclic trinuclear borazane can also be identified in 2/H;B-
NH,Me catalytic runs by in situ multinuclear NMR spectroscopy
(Figure S3). These stoichiometric reactivity studies suggest that a
viable reaction pathway under catalytic conditions involves the
stepwise assimilation of two BN-containing units to give 2-
(H)(BH,NHMeBH,NH,Me), followed by uptake of a third
molecule of the amine-borane and ejection of cyclic
(H,BNHMe);. The loss of the cyclic borazane via “backbiting”
is presumably very rapid, as no spectroscopic evidence is obtained
for the preceding P-BNBNBN linear chain. However, consistent
with its role as an intermediate in the overall dehydrogenation of
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Scheme 5. Stepwise Growth of the Oligomeric Aminoborane
Chain by Sequential Uptake of H;B-NH,Me Monomer
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H;B-NH,Me to trimethylborazine, cyclo-(H,BNHMe); can be
synthesized independently”’ and is shown to undergo further
dehydrogenation under catalytic conditions (CH,Cl, solution,
328 K, using 1 mol % 2) to generate the final trimethylborazine
product over a period of time (24 h) consistent with its
competence as a catalytic intermediate.

‘While the evolution of dihydrogen in both the 2/H;B-NH; and
2/H,B-NH,Me catalytic systems can be shown explicitly by 'H
NMR, the unfavorable equilibrium for the capture of H, by 2
means that 2-(H), does not build up to sufficient concentrations
and that it can be identified in situ, even at the end of catalytic runs.
Instead, the major FLP-containing species present when all of the
substrate has been consumed can be identified as the respective B-
bound amine adducts 2-NH,R (R = H or Me), by comparison
with the products obtained from the corresponding Lewis acid/
base reactions of 2 with NH; or MeNH,.

With a view to probing in more depth the mechanism by which
growth of the BN oligomeric chain occurs, the reaction between
2-(H)(BH,NHMe,) and H;B-NH,Me was investigated (SI,
Scheme S7). Although this reaction is kinetically slow, in situ
NMR measurements indicate that the incoming methylamine-
borane unit is assimilated in a manner consistent with an end-
growth dehydrogenative coupling mechanism, rather than via
insertion into the P—B bond of 2-(H)(BH,NHMe,). The
formation of the PBNBN backbone in the product is consistent
with the appearance of ''B signals at 8 = —12.6 and —6.4 (cf. 55 =
—13.8 and —4.6 for the corresponding PBN and NBN units in 2-
(H)(BH,NHMeBH,NH,Me)). Most informatively, the 'H
resonance associated with the terminal N-bound methyl group
in 2-(H)(BH,NMe,BH,NH,Me) is a 1:2:1 triplet of intensity
three at 5y = 2.24 (3Jyy = 5.6 Hz; cf. 8y = 2.22 for the NH,Me unit
in 2-(H)(BH,NHMeBH,NH,Me)), consistent with the pres-
ence of a capping NH,Me group (rather than NMe,H).

In conclusion, we have demonstrated the catalytic dehydrogen-
ation of ammonia- and amine-boranes by a FLP based on a
preorganized dimethylxanthene backbone. This chemistry is

DOI: 10.1021/jacs.6b01170
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initiated by B—H activation, followed by end-growth BN coupling
involving the terminal NH bond of the bound BN fragment and a
BH bond of the incoming borane monomer. The propensity for
competing intramolecular H, loss at this stage appears to be
minimal: independent synthesis of the P-BH,NH,—B amino-
borane complex allows us to demonstrate that it is not a viable
catalytic intermediate and that it is not formed in detectable
amounts as a side-product. The reluctance of the system to lose H,
intramolecularly potentially reflects the very strong B—H bond to
the electron-deficient BAr(CgF;), unit. Alternative intermolecu-
lar loss of H, at this stage to generate a P-bound BNBN linear
oligomer can be demonstrated explicitly for methylamine-borane.
Nonetheless, this is the only step in the stoichiometric formation
of the cyclic triborazane (H,BNHMe), from H;B-NH,Me, e.g.,
which does not occur spontaneously at room temperature
(requiring heating to 328 K). As such, it seems plausible that
under catalytic conditions this might be the rate-limiting step.””
That the assimilation of the second BN unit appears to be slower
than the subsequent uptake of the third equivalent of amine-
borane potentially reflects greater steric shrouding of the terminal
N—H bond in species such as 2-(H)(BH,NH,Me) than in its
longer chain analogue 2-(H)(BH,NHMeBH,NH,Me).
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